↓ Skip to main content

A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings

Overview of attention for article published in Frontiers in Neuroscience, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings
Published in
Frontiers in Neuroscience, October 2015
DOI 10.3389/fnins.2015.00389
Pubmed ID
Authors

Elizaveta Okorokova, Mikhail Lebedev, Michael Linderman, Alex Ossadtchi

Abstract

In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG) activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g., the Wiener filter) have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 23%
Student > Master 5 13%
Lecturer 3 8%
Researcher 3 8%
Student > Bachelor 3 8%
Other 5 13%
Unknown 11 28%
Readers by discipline Count As %
Neuroscience 8 21%
Engineering 8 21%
Computer Science 3 8%
Agricultural and Biological Sciences 2 5%
Psychology 2 5%
Other 5 13%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2016.
All research outputs
#16,579,551
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#7,356
of 11,538 outputs
Outputs of similar age
#165,660
of 295,443 outputs
Outputs of similar age from Frontiers in Neuroscience
#88
of 142 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,443 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 142 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.