↓ Skip to main content

Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function

Overview of attention for article published in Frontiers in Neuroscience, October 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
3 X users
f1000
1 research highlight platform

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function
Published in
Frontiers in Neuroscience, October 2015
DOI 10.3389/fnins.2015.00405
Pubmed ID
Authors

Leslie K. Climer, Maxim Dobretsov, Vladimir Lupashin

Abstract

The Conserved Oligomeric Golgi (COG) complex is an evolutionarily conserved hetero-octameric protein complex that has been proposed to organize vesicle tethering at the Golgi apparatus. Defects in seven of the eight COG subunits are linked to Congenital Disorders of Glycosylation (CDG)-type II, a family of rare diseases involving misregulation of protein glycosylation, alterations in Golgi structure, variations in retrograde trafficking through the Golgi and system-wide clinical pathologies. A troublesome aspect of these diseases are the neurological pathologies such as low IQ, microcephaly, and cerebellar atrophy. The essential function of the COG complex is dependent upon interactions with other components of trafficking machinery, such as Rab-GTPases and SNAREs. COG-interacting Rabs and SNAREs have been implicated in neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Defects in Golgi maintenance disrupts trafficking and processing of essential proteins, frequently associated with and contributing to compromised neuron function and human disease. Despite the recent advances in molecular neuroscience, the subcellular bases for most neurodegenerative diseases are poorly understood. This article gives an overview of the potential contributions of the COG complex and its Rab and SNARE partners in the pathogenesis of different neurodegenerative disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Student > Master 10 15%
Student > Bachelor 7 10%
Student > Doctoral Student 4 6%
Professor > Associate Professor 3 4%
Other 9 13%
Unknown 22 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 29%
Agricultural and Biological Sciences 12 18%
Medicine and Dentistry 4 6%
Chemistry 3 4%
Mathematics 1 1%
Other 4 6%
Unknown 24 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2017.
All research outputs
#14,387,227
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#5,643
of 11,538 outputs
Outputs of similar age
#133,878
of 295,215 outputs
Outputs of similar age from Frontiers in Neuroscience
#68
of 142 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,215 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 142 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.