↓ Skip to main content

A novel versatile hybrid infusion-multielectrode recording (HIME) system for acute drug delivery and multisite acquisition of neuronal activity in freely moving mice

Overview of attention for article published in Frontiers in Neuroscience, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A novel versatile hybrid infusion-multielectrode recording (HIME) system for acute drug delivery and multisite acquisition of neuronal activity in freely moving mice
Published in
Frontiers in Neuroscience, November 2015
DOI 10.3389/fnins.2015.00425
Pubmed ID
Authors

Oleg Senkov, Andrey Mironov, Alexander Dityatev

Abstract

To characterize information transfer in defined brain circuits involving multiple brain regions and to evaluate underlying molecular mechanisms and their dysregulation in major brain diseases, a simple and reliable system is ultimately required for electrophysiological recording of local field potentials (LFPs, or local EEG) in combination with local delivery of drugs, enzymes and gene expression-controlling viruses near the place of recording. Here we provide a new design of a versatile reusable hybrid infusion-recording (HIME) system which can be utilized in freely moving mice performing cognitive tasks. The HIME system allows monitoring neuronal activity in multiple layers in several brain structures. Here, we provide examples of bilateral injection and recordings of full spectrum of learning and memory related oscillations, i.e., theta (4-12 Hz), gamma (40-100) and ripple activity (130-150 Hz), in five hippocampal layers as well as in the CA1 and CA2 regions. Furthermore, the system is designed to be used for parallel recordings in the amygdala, cortex and other brain areas, before and after infusion of reagents of interest, either in or off a cognitive test. We anticipate that the HIME system can be particularly convenient to advance functional neuroglycobiological studies and molecular deciphering of mechanisms governing long-term memory consolidation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 25%
Student > Ph. D. Student 10 23%
Student > Bachelor 6 14%
Student > Postgraduate 3 7%
Student > Master 3 7%
Other 5 11%
Unknown 6 14%
Readers by discipline Count As %
Neuroscience 13 30%
Agricultural and Biological Sciences 10 23%
Medicine and Dentistry 4 9%
Biochemistry, Genetics and Molecular Biology 3 7%
Engineering 3 7%
Other 3 7%
Unknown 8 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2015.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#10,137
of 11,542 outputs
Outputs of similar age
#253,980
of 296,933 outputs
Outputs of similar age from Frontiers in Neuroscience
#136
of 154 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,933 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.