↓ Skip to main content

Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment

Overview of attention for article published in Frontiers in Neuroscience, November 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
5 X users
patent
3 patents

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment
Published in
Frontiers in Neuroscience, November 2015
DOI 10.3389/fnins.2015.00430
Pubmed ID
Authors

Rebecca B. Weinberg, Elliott J. Mufson, Scott E. Counts

Abstract

MicroRNAs (miRNAs) that regulate mRNA stability have been linked to amyloid production, tau phosphorylation, and inflammation in Alzheimer's disease (AD). However, whether cerebral miRNA networks are dysregulated during the earliest stages of AD remains underexplored. We performed miRNA expression analysis using frontal cortex tissue harvested from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a putative prodromal AD stage), or mild AD. Analysis revealed that the miRNA clusters miR-212/132 and miR-23a/23b were down-regulated in the frontal cortex of aMCI subjects. Both miR-212/132 and miR23a/b are predicted to destabilize the message for sirtuin 1 (sirt1); hence, down-regulation of either miR-212/132 or miR-23a/b in frontal cortex should promote sirt1 mRNA expression in this region. qPCR studies revealed that frontal cortex levels of sirt1 were increased in aMCI. Given the ability of frontal cortex to respond to the onset of dementia by neuronal reorganization, these data suggest that miRNA-mediated up-regulation of the sirt1 pathway represents a compensatory response to the onset of the disease. By contrast, qPCR analysis of inferior temporal cortex, an area affected early in the progression of AD, showed no changes in miR-212/132, miR-23a/b, or sirt1 transcripts in the same aMCI subjects. In vitro mechanistic studies showed that coordinated down-regulation of miR-212 and miR-23a increased sirt1 protein expression and provided neuroprotection from β-amyloid toxicity in human neuronal cells. Taken together, these data suggest a novel miRNA-mediated neuroprotective pathway activated during the progression of AD that may be amenable to therapeutic manipulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 61 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 21%
Researcher 11 18%
Student > Master 9 15%
Student > Bachelor 5 8%
Student > Doctoral Student 3 5%
Other 4 6%
Unknown 17 27%
Readers by discipline Count As %
Neuroscience 11 18%
Biochemistry, Genetics and Molecular Biology 11 18%
Agricultural and Biological Sciences 6 10%
Medicine and Dentistry 5 8%
Psychology 3 5%
Other 8 13%
Unknown 18 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2021.
All research outputs
#6,372,943
of 25,371,288 outputs
Outputs from Frontiers in Neuroscience
#4,236
of 11,538 outputs
Outputs of similar age
#74,240
of 296,925 outputs
Outputs of similar age from Frontiers in Neuroscience
#51
of 154 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,925 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.