↓ Skip to main content

Laminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and Sinks

Overview of attention for article published in Frontiers in Neuroscience, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Laminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and Sinks
Published in
Frontiers in Neuroscience, December 2015
DOI 10.3389/fnins.2015.00454
Pubmed ID
Authors

Roberto C. Sotero, Aleksandra Bortel, Shmuel Naaman, Victor M. Mocanu, Pascal Kropf, Martin Y. Villeneuve, Amir Shmuel

Abstract

Although resting-state functional connectivity is a commonly used neuroimaging paradigm, the underlying mechanisms remain unknown. Thalamo-cortical and cortico-cortical circuits generate oscillations at different frequencies during spontaneous activity. However, it remains unclear how the various rhythms interact and whether their interactions are lamina-specific. Here we investigated intra- and inter-laminar spontaneous phase-amplitude coupling (PAC). We recorded local-field potentials using laminar probes inserted in the forelimb representation of rat area S1. We then computed time-series of frequency-band- and lamina-specific current source density (CSD), and PACs of CSD for all possible pairs of the classical frequency bands in the range of 1-150 Hz. We observed both intra- and inter-laminar spontaneous PAC. Of 18 possible combinations, 12 showed PAC, with the highest measures of interaction obtained for the pairs of the theta/gamma and delta/gamma bands. Intra- and inter-laminar PACs involving layers 2/3-5a were higher than those involving layer 6. Current sinks (sources) in the delta band were associated with increased (decreased) amplitudes of high-frequency signals in the beta to fast gamma bands throughout layers 2/3-6. Spontaneous sinks (sources) of the theta and alpha bands in layers 2/3-4 were on average linked to dipoles completed by sources (sinks) in layer 6, associated with high (low) amplitudes of the beta to fast-gamma bands in the entire cortical column. Our findings show that during spontaneous activity, delta, theta, and alpha oscillations are associated with periodic excitability, which for the theta and alpha bands is lamina-dependent. They further emphasize the differences between the function of layer 6 and that of the superficial layers, and the role of layer 6 in controlling activity in those layers. Our study links theories on the involvement of PAC in resting-state functional connectivity with previous work that revealed lamina-specific anatomical thalamo-cortico-cortical connections.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 4%
Unknown 79 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 27 33%
Student > Ph. D. Student 16 20%
Student > Master 8 10%
Professor > Associate Professor 7 9%
Professor 5 6%
Other 9 11%
Unknown 10 12%
Readers by discipline Count As %
Neuroscience 30 37%
Agricultural and Biological Sciences 14 17%
Engineering 6 7%
Medicine and Dentistry 4 5%
Psychology 3 4%
Other 2 2%
Unknown 23 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2018.
All research outputs
#15,168,964
of 25,371,288 outputs
Outputs from Frontiers in Neuroscience
#6,402
of 11,538 outputs
Outputs of similar age
#200,653
of 396,413 outputs
Outputs of similar age from Frontiers in Neuroscience
#72
of 120 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,413 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.