↓ Skip to main content

Reduced Responses of Submucous Neurons from Irritable Bowel Syndrome Patients to a Cocktail Containing Histamine, Serotonin, TNFα, and Tryptase (IBS-Cocktail)

Overview of attention for article published in Frontiers in Neuroscience, December 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
8 news outlets
twitter
4 X users
facebook
2 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reduced Responses of Submucous Neurons from Irritable Bowel Syndrome Patients to a Cocktail Containing Histamine, Serotonin, TNFα, and Tryptase (IBS-Cocktail)
Published in
Frontiers in Neuroscience, December 2015
DOI 10.3389/fnins.2015.00465
Pubmed ID
Authors

Daniela Ostertag, Sabine Buhner, Klaus Michel, Christian Pehl, Manfred Kurjak, Manuela Götzberger, Ewert Schulte-Frohlinde, Thomas Frieling, Paul Enck, Josef Phillip, Michael Schemann

Abstract

Malfunctions of enteric neurons are believed to play an important role in the pathophysiology of irritable bowel syndrome (IBS). Our aim was to investigate whether neuronal activity in biopsies from IBS patients is altered in comparison to healthy controls (HC). Activity of human submucous neurons in response to electrical nerve stimulation and local application of nicotine or a mixture of histamine, serotonin, tryptase, and TNF-α (IBS-cocktail) was recorded in biopsies from 17 HC and 35 IBS patients with the calcium-sensitive-dye Fluo-4 AM. The concentrations of the mediators resembeled those found in biopsy supernatants or blood. Neuronal activity in guinea-pig submucous neurons was studied with the voltage-sensitive-dye di-8-ANEPPS. Activity in submucous ganglia in response to nicotine or electrical nerve stimulation was not different between HC and IBS patients (P = 0.097 or P = 0.448). However, the neuronal response after application of the IBS-cocktail was significantly decreased (P = 0.039) independent of whether diarrhea (n = 12), constipation (n = 5) or bloating (n = 5) was the predominant symptom. In agreement with this we found that responses of submucous ganglia conditioned by overnight incubation with IBS mucosal biopsy supernatant to spritz application of this supernatant was significantly reduced (P = 0.019) when compared to incubation with HC supernatant. We demonstrated for the first time reduced neuronal responses in mucosal IBS biopsies to an IBS mediator cocktail. While excitability to classical stimuli of enteric neurons was comparable to HC, the activation by the IBS-cocktail was decreased. This was very likely due to desensitization to mediators constantly released by mucosal and immune cells in the gut wall of IBS patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Ph. D. Student 6 18%
Student > Bachelor 5 15%
Student > Master 4 12%
Professor > Associate Professor 3 9%
Other 4 12%
Unknown 4 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 24%
Medicine and Dentistry 8 24%
Nursing and Health Professions 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Engineering 2 6%
Other 4 12%
Unknown 7 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 69. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 February 2016.
All research outputs
#622,152
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#256
of 11,542 outputs
Outputs of similar age
#10,453
of 395,908 outputs
Outputs of similar age from Frontiers in Neuroscience
#6
of 131 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,908 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.