↓ Skip to main content

Memory Efficient PCA Methods for Large Group ICA

Overview of attention for article published in Frontiers in Neuroscience, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Memory Efficient PCA Methods for Large Group ICA
Published in
Frontiers in Neuroscience, February 2016
DOI 10.3389/fnins.2016.00017
Pubmed ID
Authors

Srinivas Rachakonda, Rogers F. Silva, Jingyu Liu, Vince D. Calhoun

Abstract

Principal component analysis (PCA) is widely used for data reduction in group independent component analysis (ICA) of fMRI data. Commonly, group-level PCA of temporally concatenated datasets is computed prior to ICA of the group principal components. This work focuses on reducing very high dimensional temporally concatenated datasets into its group PCA space. Existing randomized PCA methods can determine the PCA subspace with minimal memory requirements and, thus, are ideal for solving large PCA problems. Since the number of dataloads is not typically optimized, we extend one of these methods to compute PCA of very large datasets with a minimal number of dataloads. This method is coined multi power iteration (MPOWIT). The key idea behind MPOWIT is to estimate a subspace larger than the desired one, while checking for convergence of only the smaller subset of interest. The number of iterations is reduced considerably (as well as the number of dataloads), accelerating convergence without loss of accuracy. More importantly, in the proposed implementation of MPOWIT, the memory required for successful recovery of the group principal components becomes independent of the number of subjects analyzed. Highly efficient subsampled eigenvalue decomposition techniques are also introduced, furnishing excellent PCA subspace approximations that can be used for intelligent initialization of randomized methods such as MPOWIT. Together, these developments enable efficient estimation of accurate principal components, as we illustrate by solving a 1600-subject group-level PCA of fMRI with standard acquisition parameters, on a regular desktop computer with only 4 GB RAM, in just a few hours. MPOWIT is also highly scalable and could realistically solve group-level PCA of fMRI on thousands of subjects, or more, using standard hardware, limited only by time, not memory. Also, the MPOWIT algorithm is highly parallelizable, which would enable fast, distributed implementations ideal for big data analysis. Implications to other methods such as expectation maximization PCA (EM PCA) are also presented. Based on our results, general recommendations for efficient application of PCA methods are given according to problem size and available computational resources. MPOWIT and all other methods discussed here are implemented and readily available in the open source GIFT software.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
France 1 3%
Unknown 36 95%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 26%
Researcher 8 21%
Student > Ph. D. Student 5 13%
Student > Bachelor 3 8%
Student > Doctoral Student 2 5%
Other 4 11%
Unknown 6 16%
Readers by discipline Count As %
Engineering 8 21%
Computer Science 4 11%
Neuroscience 4 11%
Agricultural and Biological Sciences 3 8%
Psychology 3 8%
Other 7 18%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2016.
All research outputs
#17,286,379
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#8,067
of 11,542 outputs
Outputs of similar age
#246,748
of 405,927 outputs
Outputs of similar age from Frontiers in Neuroscience
#110
of 154 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,927 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.