↓ Skip to main content

The Effect of Nitric Oxide Inhibition in Spinal Cord Injured Humans with and without Preserved Sympathetic Control of the Vasculature

Overview of attention for article published in Frontiers in Neuroscience, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effect of Nitric Oxide Inhibition in Spinal Cord Injured Humans with and without Preserved Sympathetic Control of the Vasculature
Published in
Frontiers in Neuroscience, March 2016
DOI 10.3389/fnins.2016.00095
Pubmed ID
Authors

Rachael Brown, David Celermajer, Vaughan Macefield, Mikael Sander

Abstract

Systemic pharmacological inhibition of nitric oxide (NO) causes a hypertensive response, which has been attributed both to inhibition of peripheral NO-mediated vasodilatation and to inhibition of central nervous NO-production leading to a later onset sympathetic vasoconstriction. In the present study we aimed to test the importance of these two mechanisms by comparing the time-courses of the hypertensive responses in spinal cord injured (SCI) subjects with varying degrees of loss of sympathetic vascular control depending on level of injury as well as able-bodied controls. We hypothesized that high level SCI with no sympathetic vasoconstrictor control would have an abbreviated time-course of the hypertensive response to the NO-inhibitor L-NAME, because they would lack the late onset sympathetic component to the hypertensive response. NO production was blocked in 12 subjects with SCI and 6 controls by intravenous infusion of L-NAME (1.55-2.7 mg/kg). We measured blood pressure, heart rate, and vascular conductance in the carotid, brachial, and femoral arteries before, during, and after 1 h of L-NAME in a 4-h protocol. Peak increases in mean arterial pressure were significantly larger in high level SCI vs. 32 ± 6 vs. 12 ± 2 mmHg (both groups received 1.55 mg/kg). The decreases in vascular conductance in the brachial and femoral vascular beds were also larger in the high level SCI group, whereas decreases in heart rate and carotid conductance were not significantly different between the groups. There were no indications of any abbreviated responses in blood pressure or vascular conductance in the high level SCI compared to control. The mid level and low-level SCI subject had responses similar to controls. These data confirm previous reports that NO inhibition causes a larger increase in blood pressure in high level SCI, and extend these data by providing evidence for differences in vascular conductance in the limbs. The current data do not support an obligatory important role for sympathetic vasoconstriction in maintaining the hypertensive response to L-NAME in humans.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 30%
Student > Ph. D. Student 2 20%
Other 1 10%
Professor 1 10%
Lecturer 1 10%
Other 2 20%
Readers by discipline Count As %
Medicine and Dentistry 6 60%
Nursing and Health Professions 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Agricultural and Biological Sciences 1 10%
Neuroscience 1 10%
Other 0 0%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2016.
All research outputs
#22,759,452
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#10,135
of 11,538 outputs
Outputs of similar age
#271,079
of 314,783 outputs
Outputs of similar age from Frontiers in Neuroscience
#141
of 166 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,783 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 166 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.