↓ Skip to main content

Solving Constraint Satisfaction Problems with Networks of Spiking Neurons

Overview of attention for article published in Frontiers in Neuroscience, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
105 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
Published in
Frontiers in Neuroscience, March 2016
DOI 10.3389/fnins.2016.00118
Pubmed ID
Authors

Zeno Jonke, Stefan Habenschuss, Wolfgang Maass

Abstract

Network of neurons in the brain apply-unlike processors in our current generation of computer hardware-an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 105 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
United Kingdom 2 2%
Italy 1 <1%
Germany 1 <1%
Switzerland 1 <1%
Australia 1 <1%
Unknown 97 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 22 21%
Student > Ph. D. Student 19 18%
Student > Master 17 16%
Student > Bachelor 13 12%
Student > Postgraduate 6 6%
Other 11 10%
Unknown 17 16%
Readers by discipline Count As %
Computer Science 24 23%
Engineering 21 20%
Neuroscience 19 18%
Physics and Astronomy 7 7%
Agricultural and Biological Sciences 4 4%
Other 11 10%
Unknown 19 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2016.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#10,135
of 11,538 outputs
Outputs of similar age
#272,082
of 315,026 outputs
Outputs of similar age from Frontiers in Neuroscience
#154
of 177 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,026 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.