↓ Skip to main content

Animal Models of Tourette Syndrome—From Proliferation to Standardization

Overview of attention for article published in Frontiers in Neuroscience, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Animal Models of Tourette Syndrome—From Proliferation to Standardization
Published in
Frontiers in Neuroscience, March 2016
DOI 10.3389/fnins.2016.00132
Pubmed ID
Authors

Dorin Yael, Michal Israelashvili, Izhar Bar-Gad

Abstract

Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 16%
Student > Bachelor 10 14%
Student > Ph. D. Student 10 14%
Researcher 9 13%
Other 4 6%
Other 7 10%
Unknown 19 27%
Readers by discipline Count As %
Neuroscience 14 20%
Psychology 9 13%
Agricultural and Biological Sciences 9 13%
Medicine and Dentistry 5 7%
Biochemistry, Genetics and Molecular Biology 3 4%
Other 8 11%
Unknown 22 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2016.
All research outputs
#22,758,309
of 25,371,288 outputs
Outputs from Frontiers in Neuroscience
#10,134
of 11,538 outputs
Outputs of similar age
#272,336
of 315,342 outputs
Outputs of similar age from Frontiers in Neuroscience
#154
of 177 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,342 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.