↓ Skip to main content

Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents

Overview of attention for article published in Frontiers in Neuroscience, May 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
4 X users
googleplus
1 Google+ user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents
Published in
Frontiers in Neuroscience, May 2016
DOI 10.3389/fnins.2016.00175
Pubmed ID
Authors

Natsue Yoshimura, Atsushi Nishimoto, Abdelkader Nasreddine Belkacem, Duk Shin, Hiroyuki Kambara, Takashi Hanakawa, Yasuharu Koike

Abstract

With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 83 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 16%
Student > Ph. D. Student 12 14%
Student > Master 10 12%
Student > Bachelor 9 11%
Professor 5 6%
Other 16 19%
Unknown 18 22%
Readers by discipline Count As %
Neuroscience 19 23%
Engineering 16 19%
Computer Science 12 14%
Nursing and Health Professions 3 4%
Psychology 3 4%
Other 7 8%
Unknown 23 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2021.
All research outputs
#8,261,756
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#5,239
of 11,538 outputs
Outputs of similar age
#109,633
of 312,399 outputs
Outputs of similar age from Frontiers in Neuroscience
#79
of 169 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,399 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 169 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.