↓ Skip to main content

Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks

Overview of attention for article published in Frontiers in Neuroscience, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
16 X users

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks
Published in
Frontiers in Neuroscience, May 2016
DOI 10.3389/fnins.2016.00180
Pubmed ID
Authors

Daniel J. DeDora, Sanja Nedic, Pratha Katti, Shafique Arnab, Lawrence L. Wald, Atsushi Takahashi, Koene R. A. Van Dijk, Helmut H. Strey, Lilianne R. Mujica-Parodi

Abstract

Task-free connectivity analyses have emerged as a powerful tool in functional neuroimaging. Because the cross-correlations that underlie connectivity measures are sensitive to distortion of time-series, here we used a novel dynamic phantom to provide a ground truth for dynamic fidelity between blood oxygen level dependent (BOLD)-like inputs and fMRI outputs. We found that the de facto quality-metric for task-free fMRI, temporal signal to noise ratio (tSNR), correlated inversely with dynamic fidelity; thus, studies optimized for tSNR actually produced time-series that showed the greatest distortion of signal dynamics. Instead, the phantom showed that dynamic fidelity is reasonably approximated by a measure that, unlike tSNR, dissociates signal dynamics from scanner artifact. We then tested this measure, signal fluctuation sensitivity (SFS), against human resting-state data. As predicted by the phantom, SFS-and not tSNR-is associated with enhanced sensitivity to both local and long-range connectivity within the brain's default mode network.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 61 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 24%
Researcher 14 23%
Student > Master 9 15%
Student > Bachelor 5 8%
Professor 4 6%
Other 9 15%
Unknown 6 10%
Readers by discipline Count As %
Neuroscience 14 23%
Psychology 10 16%
Engineering 7 11%
Medicine and Dentistry 7 11%
Agricultural and Biological Sciences 5 8%
Other 10 16%
Unknown 9 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2022.
All research outputs
#4,141,901
of 25,385,509 outputs
Outputs from Frontiers in Neuroscience
#3,415
of 11,543 outputs
Outputs of similar age
#60,991
of 312,493 outputs
Outputs of similar age from Frontiers in Neuroscience
#46
of 169 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,543 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,493 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 169 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.