↓ Skip to main content

Shielded Coaxial Optrode Arrays for Neurophysiology

Overview of attention for article published in Frontiers in Neuroscience, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Shielded Coaxial Optrode Arrays for Neurophysiology
Published in
Frontiers in Neuroscience, June 2016
DOI 10.3389/fnins.2016.00252
Pubmed ID
Authors

Jeffrey R. Naughton, Timothy Connolly, Juan A. Varela, Jaclyn Lundberg, Michael J. Burns, Thomas C. Chiles, John P. Christianson, Michael J. Naughton

Abstract

Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 31%
Researcher 7 24%
Student > Master 5 17%
Student > Doctoral Student 2 7%
Professor 1 3%
Other 2 7%
Unknown 3 10%
Readers by discipline Count As %
Engineering 8 28%
Agricultural and Biological Sciences 4 14%
Physics and Astronomy 4 14%
Neuroscience 4 14%
Chemistry 3 10%
Other 2 7%
Unknown 4 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2016.
All research outputs
#14,913,921
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#6,086
of 11,538 outputs
Outputs of similar age
#187,783
of 357,327 outputs
Outputs of similar age from Frontiers in Neuroscience
#102
of 177 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 357,327 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.