↓ Skip to main content

Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture

Overview of attention for article published in Frontiers in Neuroscience, September 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture
Published in
Frontiers in Neuroscience, September 2016
DOI 10.3389/fnins.2016.00420
Pubmed ID
Authors

James C. Knight, Steve B. Furber

Abstract

While the adult human brain has approximately 8.8 × 10(10) neurons, this number is dwarfed by its 1 × 10(15) synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows 4× more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 32%
Student > Bachelor 4 11%
Student > Doctoral Student 4 11%
Researcher 3 8%
Student > Master 2 5%
Other 5 14%
Unknown 7 19%
Readers by discipline Count As %
Computer Science 15 41%
Neuroscience 3 8%
Engineering 3 8%
Agricultural and Biological Sciences 2 5%
Physics and Astronomy 2 5%
Other 3 8%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2020.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#8,669
of 11,542 outputs
Outputs of similar age
#242,341
of 330,523 outputs
Outputs of similar age from Frontiers in Neuroscience
#89
of 132 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,523 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 132 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.