↓ Skip to main content

Differential Effects of Brain Disorders on Structural and Functional Connectivity

Overview of attention for article published in Frontiers in Neuroscience, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
49 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Effects of Brain Disorders on Structural and Functional Connectivity
Published in
Frontiers in Neuroscience, January 2017
DOI 10.3389/fnins.2016.00605
Pubmed ID
Authors

Sandro Vega-Pons, Emanuele Olivetti, Paolo Avesani, Luca Dodero, Alessandro Gozzi, Angelo Bifone

Abstract

Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 4%
Unknown 47 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 24%
Researcher 10 20%
Student > Ph. D. Student 8 16%
Student > Doctoral Student 4 8%
Student > Bachelor 2 4%
Other 6 12%
Unknown 7 14%
Readers by discipline Count As %
Neuroscience 17 35%
Engineering 5 10%
Psychology 3 6%
Physics and Astronomy 2 4%
Computer Science 2 4%
Other 9 18%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2017.
All research outputs
#16,046,765
of 25,371,288 outputs
Outputs from Frontiers in Neuroscience
#7,061
of 11,538 outputs
Outputs of similar age
#242,507
of 422,719 outputs
Outputs of similar age from Frontiers in Neuroscience
#90
of 169 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,719 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 169 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.