↓ Skip to main content

Central and Peripheral Effects of Urotensin II and Urotensin II-Related Peptides on Cardiac Baroreflex Sensitivity in Trout

Overview of attention for article published in Frontiers in Neuroscience, February 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Central and Peripheral Effects of Urotensin II and Urotensin II-Related Peptides on Cardiac Baroreflex Sensitivity in Trout
Published in
Frontiers in Neuroscience, February 2017
DOI 10.3389/fnins.2017.00051
Pubmed ID
Authors

Frédéric Lancien, Gilmer Vanegas, Jérôme Leprince, Hubert Vaudry, Jean-Claude Le Mével

Abstract

The baroreflex response is an essential component of the cardiovascular regulation that buffers abrupt changes in blood pressure to maintain homeostasis. Urotensin II (UII) and its receptor UT are present in the brain and in peripheral cardiovascular tissues of fish and mammals. Intracerebroventricular (ICV) injection of UII in these vertebrates provokes hypertension and tachycardia, suggesting that the cardio-inhibitory baroreflex response is impaired. Since nothing is known about the effect of UII on the cardiac baroreflex sensitivity (BRS), we decided to clarify the changes in spontaneous BRS using a cross spectral analysis technique of systolic blood pressure (SBP) and R-R interval variabilities after ICV and intra-arterial (IA) injections of trout UII in the unanesthetized trout. We contrasted the effects of UII with those observed for the UII-related peptides (URP), URP1 and URP2. Compared with vehicle-injected trout, ICV injection of UII (5-500 pmol) produced a gradual increase in SBP, a decrease in the R-R interval (reflecting a tachycardia) associated with a dose-dependent reduction of the BRS. The threshold dose for a significant effect on these parameters was 50 pmol (BRS; -55%; 1450 ± 165 ms/kPa vs. 3240 ± 300 ms/kPa; P < 0.05). Only the 500-pmol dose of URP2 caused a significant increase in SBP without changing significantly the R-R interval but reduced the BRS. IA injection of UII (5-500 pmol) caused a dose-dependent elevation of SBP. Contrasting with the ICV effects of UII, the R-R interval increased (reflecting a bradycardia) up to the 50-pmol dose while the BRS remained unchanged (50 pmol; 2530 ± 270 ms/kPa vs. 2600 ± 180 ms/kPa; P < 0.05). Nonetheless, the highest dose of UII reduced the BRS as did the highest dose of URP1. In conclusion, the contrasting effect of low picomolar doses of UII after central and peripheral injection on the BRS suggests that only the central urotensinergic system is involved in the attenuation of the BRS. The limited and quite divergent effects of URP1 and URP2 on the BRS, indicate that the action of UII is specific for this peptide. Further studies are required to elucidate the site(s) and mechanisms of action of UII on the baroreflex pathways. Whether such effects of central UII on the BRS exist in mammals including humans warrants further investigations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 2 25%
Student > Master 2 25%
Student > Doctoral Student 1 13%
Lecturer 1 13%
Unknown 2 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 25%
Arts and Humanities 1 13%
Veterinary Science and Veterinary Medicine 1 13%
Nursing and Health Professions 1 13%
Business, Management and Accounting 1 13%
Other 0 0%
Unknown 2 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#8,671
of 11,542 outputs
Outputs of similar age
#308,405
of 427,435 outputs
Outputs of similar age from Frontiers in Neuroscience
#129
of 186 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,435 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 186 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.