↓ Skip to main content

Fine-Tuning Circadian Rhythms: The Importance of Bmal1 Expression in the Ventral Forebrain

Overview of attention for article published in Frontiers in Neuroscience, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fine-Tuning Circadian Rhythms: The Importance of Bmal1 Expression in the Ventral Forebrain
Published in
Frontiers in Neuroscience, February 2017
DOI 10.3389/fnins.2017.00055
Pubmed ID
Authors

Michihiro Mieda, Emi Hasegawa, Nicoletta Kessaris, Takeshi Sakurai

Abstract

Although, the suprachiasmatic nucleus (SCN) of the hypothalamus acts as the central clock in mammals, the circadian expression of clock genes has been demonstrated not only in the SCN, but also in peripheral tissues and brain regions outside the SCN. However, the physiological roles of extra-SCN circadian clocks in the brain remain largely elusive. In response, we generated Nkx2.1-Bmal1(-/-) mice in which Bmal1, an essential clock component, was genetically deleted specifically in the ventral forebrain, including the preoptic area, nucleus of the diagonal band, and most of the hypothalamus except the SCN. In these mice, as expected, PER2::LUC oscillation was drastically attenuated in the explants of mediobasal hypothalamus, whereas it was maintained in those of the SCN. Although, Nkx2.1-Bmal1(-/-) mice were rhythmic and nocturnal, they showed altered patterns of locomotor activity during the night in a 12:12-h light:dark cycle and during subjective night in constant darkness. Control mice were more active during the first half than the second half of the dark phase or subjective night, whereas Nkx2.1-Bmal1(-/-) mice showed the opposite pattern of locomotor activity. Temporal patterns of sleep-wakefulness and feeding also changed accordingly. Such results suggest that along with mechanisms in the SCN, local Bmal1-dependent clocks in the ventral forebrain are critical for generating precise temporal patterns of circadian behaviors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 23%
Student > Ph. D. Student 6 19%
Student > Bachelor 4 13%
Professor 2 6%
Professor > Associate Professor 2 6%
Other 3 10%
Unknown 7 23%
Readers by discipline Count As %
Neuroscience 8 26%
Biochemistry, Genetics and Molecular Biology 5 16%
Agricultural and Biological Sciences 5 16%
Medicine and Dentistry 3 10%
Business, Management and Accounting 1 3%
Other 0 0%
Unknown 9 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 June 2017.
All research outputs
#14,918,049
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,088
of 11,542 outputs
Outputs of similar age
#219,655
of 424,566 outputs
Outputs of similar age from Frontiers in Neuroscience
#81
of 183 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,566 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.