↓ Skip to main content

Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder

Overview of attention for article published in Frontiers in Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder
Published in
Frontiers in Neuroscience, March 2017
DOI 10.3389/fnins.2017.00125
Pubmed ID
Authors

Shuo Chen, Yishi Xing, Jian Kang

Abstract

Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 20%
Student > Ph. D. Student 11 20%
Researcher 9 16%
Student > Bachelor 5 9%
Student > Postgraduate 3 5%
Other 8 14%
Unknown 9 16%
Readers by discipline Count As %
Neuroscience 19 34%
Psychology 10 18%
Agricultural and Biological Sciences 3 5%
Engineering 3 5%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 8 14%
Unknown 11 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2017.
All research outputs
#6,573,525
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,355
of 11,542 outputs
Outputs of similar age
#98,077
of 322,965 outputs
Outputs of similar age from Frontiers in Neuroscience
#70
of 206 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,965 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 206 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.