↓ Skip to main content

Nicotinamide and WLDS Act Together to Prevent Neurodegeneration in Glaucoma

Overview of attention for article published in Frontiers in Neuroscience, April 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
8 X users

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nicotinamide and WLDS Act Together to Prevent Neurodegeneration in Glaucoma
Published in
Frontiers in Neuroscience, April 2017
DOI 10.3389/fnins.2017.00232
Pubmed ID
Authors

Pete A. Williams, Jeffrey M. Harder, Nicole E. Foxworth, Brynn H. Cardozo, Kelly E. Cochran, Simon W. M. John

Abstract

Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD(+) and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, Wld(S) , decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that Wld(S) increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than Wld(S) or nicotinamide alone). Importantly, nicotinamide and Wld(S) protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 17%
Student > Master 6 10%
Student > Ph. D. Student 5 8%
Student > Bachelor 4 7%
Student > Doctoral Student 3 5%
Other 8 13%
Unknown 24 40%
Readers by discipline Count As %
Neuroscience 18 30%
Medicine and Dentistry 6 10%
Biochemistry, Genetics and Molecular Biology 5 8%
Agricultural and Biological Sciences 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 2 3%
Unknown 24 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2017.
All research outputs
#6,573,525
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,355
of 11,542 outputs
Outputs of similar age
#96,270
of 323,623 outputs
Outputs of similar age from Frontiers in Neuroscience
#78
of 209 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,623 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 209 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.