↓ Skip to main content

How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

Overview of attention for article published in Frontiers in Neuroscience, May 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo
Published in
Frontiers in Neuroscience, May 2017
DOI 10.3389/fnins.2017.00288
Pubmed ID
Authors

Sarah Sonnay, Rolf Gruetter, João M. N. Duarte

Abstract

Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, (1)H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. (1)H-[(13)C] MRS, i.e., indirect detection of signals from (13)C-coupled (1)H, together with infusion of (13)C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of (13)C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct (13)C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state-of-the-art MR methods to study brain function and metabolism in vivo, and their contribution to the current understanding of how astrocytic energy metabolism supports glutamatergic activity and cerebral function. In this context, recent data suggests that astrocytic metabolism has been underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half of that in neurons, and it can increase as much as the rate of neuronal metabolism in response to sensory stimulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 85 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 22%
Researcher 11 13%
Student > Bachelor 10 12%
Student > Master 7 8%
Other 4 5%
Other 15 18%
Unknown 19 22%
Readers by discipline Count As %
Neuroscience 21 25%
Biochemistry, Genetics and Molecular Biology 12 14%
Agricultural and Biological Sciences 7 8%
Medicine and Dentistry 7 8%
Physics and Astronomy 4 5%
Other 12 14%
Unknown 22 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2017.
All research outputs
#7,156,351
of 25,394,764 outputs
Outputs from Frontiers in Neuroscience
#4,633
of 11,544 outputs
Outputs of similar age
#105,918
of 327,217 outputs
Outputs of similar age from Frontiers in Neuroscience
#65
of 185 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 11,544 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,217 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 185 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.