↓ Skip to main content

Maternal Different Degrees of Iodine Deficiency during Pregnant and Lactation Impair the Development of Cerebellar Pinceau in Offspring

Overview of attention for article published in Frontiers in Neuroscience, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Maternal Different Degrees of Iodine Deficiency during Pregnant and Lactation Impair the Development of Cerebellar Pinceau in Offspring
Published in
Frontiers in Neuroscience, May 2017
DOI 10.3389/fnins.2017.00298
Pubmed ID
Authors

Jing Dong, Heling Song, Yuan Wang, Min Li, Ye Yu, Yi Wang, Jie Chen

Abstract

Aims: Iodine is critical for synthesis of thyroid hormones (TH). And iodine deficiency (ID) is one of the most significant reasons of intellectual disability and motor memory impairment, although the potential mechanisms are still under investigation. Presently, mild ID and marginal ID are largely ignored problems for women of child bearing age. Mild ID is a subtle form of TH deficiency, which shows low levels of free thyroxine (FT4) and relatively normal free triiodothyronine (FT3) or thyroid stimulation hormone (TSH). And marginal ID is a milder form of ID with decreased total T4 (TT4) but relatively normal FT3, FT4, and TSH. Therefore, we investigated the effects of maternal different degrees of ID on the development of pinceau in cerebellar purkinje cells (PCs) and studied the expression of pinceau related protein, which is crucial for the development and maturation of pinceau. Methods and Results: Three developmental iodine deficient rat models were created by feeding dam rats with an iodine-deficient diet and deionized water supplemented with potassiumiodide. Our study showed that different degrees of ID inhibited cerebellar pinceau synapse development and maturation on postnatal day (PN) 14 and PN21. What's more, mild and severe ID reduced the expression of AnkG, β4-spectrin, neurofascin186 and NrCAM on PN7, PN14, and PN21. However, marginal ID rarely altered expression of these proteins in the offspring. Conclusion: These results suggested that maternal mild and severe ID impaired the development and maturation of cerebellar pinceau, which may be attributed to the decrease of AnkG, β4-spectrin, neurofascin 186, and NrCAM. And the alteration of development and maturation in cerebellar pinceau in the offspring were also observed following maternal marginal ID, which is slighter than that of mild ID.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 12%
Student > Master 3 12%
Unspecified 2 8%
Student > Ph. D. Student 2 8%
Student > Bachelor 2 8%
Other 2 8%
Unknown 11 44%
Readers by discipline Count As %
Nursing and Health Professions 3 12%
Unspecified 2 8%
Medicine and Dentistry 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Agricultural and Biological Sciences 1 4%
Other 4 16%
Unknown 12 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#10,138
of 11,542 outputs
Outputs of similar age
#286,727
of 327,782 outputs
Outputs of similar age from Frontiers in Neuroscience
#168
of 190 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,782 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 190 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.