↓ Skip to main content

Circadian Metabolomics in Time and Space

Overview of attention for article published in Frontiers in Neuroscience, January 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Circadian Metabolomics in Time and Space
Published in
Frontiers in Neuroscience, January 2017
DOI 10.3389/fnins.2017.00369
Pubmed ID
Authors

Kenneth A. Dyar, Kristin L. Eckel-Mahan

Abstract

Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various "omics"-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine "omics" approach for studying metabolism, and "circadian metabolomics" (i.e., studying the 24-h metabolome) has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 1%
Unknown 83 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 18%
Researcher 14 17%
Student > Master 11 13%
Student > Postgraduate 7 8%
Student > Bachelor 6 7%
Other 19 23%
Unknown 12 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 26%
Medicine and Dentistry 10 12%
Neuroscience 8 10%
Agricultural and Biological Sciences 7 8%
Immunology and Microbiology 5 6%
Other 13 15%
Unknown 19 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 July 2017.
All research outputs
#7,357,897
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,793
of 11,542 outputs
Outputs of similar age
#126,117
of 421,709 outputs
Outputs of similar age from Frontiers in Neuroscience
#50
of 174 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,709 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 174 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.