↓ Skip to main content

On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise

Overview of attention for article published in Frontiers in Neuroscience, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise
Published in
Frontiers in Neuroscience, July 2017
DOI 10.3389/fnins.2017.00395
Pubmed ID
Authors

Javiera Pardo-Jadue, Constantino D. Dragicevic, Macarena Bowen, Paul H. Delano

Abstract

The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 33%
Student > Bachelor 3 20%
Researcher 2 13%
Professor > Associate Professor 2 13%
Lecturer 1 7%
Other 2 13%
Readers by discipline Count As %
Engineering 4 27%
Neuroscience 4 27%
Medicine and Dentistry 3 20%
Agricultural and Biological Sciences 2 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Other 0 0%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2017.
All research outputs
#20,660,571
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#9,459
of 11,542 outputs
Outputs of similar age
#250,883
of 324,855 outputs
Outputs of similar age from Frontiers in Neuroscience
#152
of 176 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,855 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 176 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.