↓ Skip to main content

Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features

Overview of attention for article published in Frontiers in Neuroscience, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
123 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
Published in
Frontiers in Neuroscience, July 2017
DOI 10.3389/fnins.2017.00398
Pubmed ID
Authors

Adrian Ion-Mărgineanu, Gabriel Kocevar, Claudio Stamile, Diana M. Sima, Françoise Durand-Dubief, Sabine Van Huffel, Dominique Sappey-Marinier

Abstract

Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N-acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71-72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 123 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 123 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 18%
Researcher 15 12%
Student > Doctoral Student 13 11%
Student > Bachelor 12 10%
Student > Master 10 8%
Other 21 17%
Unknown 30 24%
Readers by discipline Count As %
Medicine and Dentistry 25 20%
Computer Science 16 13%
Engineering 13 11%
Neuroscience 11 9%
Biochemistry, Genetics and Molecular Biology 5 4%
Other 16 13%
Unknown 37 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2017.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,691
of 11,542 outputs
Outputs of similar age
#178,624
of 324,855 outputs
Outputs of similar age from Frontiers in Neuroscience
#104
of 176 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,855 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 176 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.