↓ Skip to main content

Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations

Overview of attention for article published in Frontiers in Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations
Published in
Frontiers in Neuroscience, September 2017
DOI 10.3389/fnins.2017.00518
Pubmed ID
Authors

Yuan Yang, Bekir Guliyev, Alfred C. Schouten

Abstract

Mechanical perturbations applied to the wrist joint typically evoke a stereotypical sequence of cortical and muscle responses. The early cortical responses (<100 ms) are thought be involved in the "rapid" transcortical reaction to the perturbation while the late cortical responses (>100 ms) are related to the "slow" transcortical reaction. Although previous studies indicated that both responses involve the primary motor cortex, it remains unclear if both responses are engaged by the same effective connectivity in the cortical network. To answer this question, we investigated the effective connectivity cortical network after a "ramp-and-hold" mechanical perturbation, in both the early (<100 ms) and late (>100 ms) periods, using dynamic causal modeling. Ramp-and-hold perturbations were applied to the wrist joint while the subject maintained an isometric wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram (EEG). We investigated how the perturbation modulated the effective connectivity for the early and late periods. Bayesian model comparisons suggested that different effective connectivity networks are engaged in these two periods. For the early period, we found that only a few cortico-cortical connections were modulated, while more complicated connectivity was identified in the cortical network during the late period with multiple modulated cortico-cortical connections. The limited early cortical network likely allows for a rapid muscle response without involving high-level cognitive processes, while the complexity of the late network may facilitate coordinated responses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Researcher 5 16%
Student > Doctoral Student 3 9%
Other 3 9%
Student > Master 3 9%
Other 5 16%
Unknown 7 22%
Readers by discipline Count As %
Engineering 8 25%
Neuroscience 6 19%
Unspecified 2 6%
Nursing and Health Professions 1 3%
Computer Science 1 3%
Other 6 19%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2019.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#7,427
of 11,542 outputs
Outputs of similar age
#196,183
of 323,485 outputs
Outputs of similar age from Frontiers in Neuroscience
#126
of 158 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,485 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 158 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.