↓ Skip to main content

Motor Areas Show Altered Dendritic Structure in an Amyotrophic Lateral Sclerosis Mouse Model

Overview of attention for article published in Frontiers in Neuroscience, November 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Motor Areas Show Altered Dendritic Structure in an Amyotrophic Lateral Sclerosis Mouse Model
Published in
Frontiers in Neuroscience, November 2017
DOI 10.3389/fnins.2017.00609
Pubmed ID
Authors

Matthew J. Fogarty, Erica W. H. Mu, Nickolas A. Lavidis, Peter G. Noakes, Mark C. Bellingham

Abstract

Objective: Motor neurons (MNs) die in amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disease of unknown etiology. In human or rodent studies, MN loss is preceded by increased excitability. As increased neuronal excitability correlates with structural changes in dendritic arbors and spines, we have examined longitudinal changes in dendritic structure in vulnerable neuron populations in a mouse model of familial ALS. Methods: We used a modified Golgi-Cox staining method to determine the progressive changes in dendritic structure of hippocampal CA1 pyramidal neurons, striatal medium spiny neurons, and resistant (trochlear, IV) or susceptible (hypoglossal, XII; lumbar) MNs from brainstem and spinal cord of mice over-expressing the human SOD1(G93A) (SOD1) mutation, in comparison to wild-type (WT) mice, at four postnatal (P) ages of 8-15, 28-35, 65-75, and 120 days. Results: In SOD1 mice, dendritic changes occur at pre-symptomatic ages in both XII and spinal cord lumbar MNs. Spine loss without dendritic changes was present in striatal neurons from disease onset. Spine density increases were present at all ages studied in SOD1 XII MNs. Spine density increased in neonatal lumbar MNs, before decreasing to control levels by P28-35 and was decreased by P120. SOD1 XII MNs and lumbar MNs, but not trochlear MNs showed vacuolization from the same time-points. Trochlear MN dendrites were unchanged. Interpretation: Dendritic structure and spine alterations correlate with the neuro-motor phenotype in ALS and with cognitive and extra-motor symptoms seen in patients. Prominent early changes in dendritic arbors and spines occur in susceptible cranial and spinal cord MNs, but are absent in MNs resistant to loss in ALS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 27%
Researcher 8 17%
Student > Bachelor 8 17%
Student > Master 3 6%
Student > Doctoral Student 2 4%
Other 8 17%
Unknown 6 13%
Readers by discipline Count As %
Neuroscience 19 40%
Biochemistry, Genetics and Molecular Biology 9 19%
Agricultural and Biological Sciences 2 4%
Psychology 2 4%
Social Sciences 2 4%
Other 5 10%
Unknown 9 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#8,070
of 11,542 outputs
Outputs of similar age
#217,828
of 340,752 outputs
Outputs of similar age from Frontiers in Neuroscience
#159
of 188 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,752 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 188 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.