↓ Skip to main content

Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach

Overview of attention for article published in Frontiers in Neuroscience, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach
Published in
Frontiers in Neuroscience, December 2017
DOI 10.3389/fnins.2017.00710
Pubmed ID
Authors

Mario Stampanoni Bassi, Luana Gilio, Fabio Buttari, Pierpaolo Maffei, Girolama A. Marfia, Domenico A. Restivo, Diego Centonze, Ennio Iezzi

Abstract

Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 14%
Student > Bachelor 7 14%
Student > Master 6 12%
Student > Ph. D. Student 4 8%
Student > Postgraduate 4 8%
Other 11 22%
Unknown 12 24%
Readers by discipline Count As %
Neuroscience 13 25%
Psychology 5 10%
Nursing and Health Professions 4 8%
Medicine and Dentistry 4 8%
Unspecified 2 4%
Other 5 10%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2018.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,691
of 11,542 outputs
Outputs of similar age
#242,923
of 443,420 outputs
Outputs of similar age from Frontiers in Neuroscience
#116
of 187 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,420 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 187 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.