↓ Skip to main content

Conductive Hydrogel Electrodes for Delivery of Long-Term High Frequency Pulses

Overview of attention for article published in Frontiers in Neuroscience, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Conductive Hydrogel Electrodes for Delivery of Long-Term High Frequency Pulses
Published in
Frontiers in Neuroscience, January 2018
DOI 10.3389/fnins.2017.00748
Pubmed ID
Authors

Naomi A. Staples, Josef A. Goding, Aaron D. Gilmour, Kirill Y. Aristovich, Phillip Byrnes-Preston, David S. Holder, John W. Morley, Nigel H. Lovell, Daniel J. Chew, Rylie A. Green

Abstract

Nerve block waveforms require the passage of large amounts of electrical energy at the neural interface for extended periods of time. It is desirable that such waveforms be applied chronically, consistent with the treatment of protracted immune conditions, however current metal electrode technologies are limited in their capacity to safely deliver ongoing stable blocking waveforms. Conductive hydrogel (CH) electrode coatings have been shown to improve the performance of conventional bionic devices, which use considerably lower amounts of energy than conventional metal electrodes to replace or augment sensory neuron function. In this study the application of CH materials was explored, using both a commercially available platinum iridium (PtIr) cuff electrode array and a novel low-cost stainless steel (SS) electrode array. The CH was able to significantly increase the electrochemical performance of both array types. The SS electrode coated with the CH was shown to be stable under continuous delivery of 2 mA square pulse waveforms at 40,000 Hz for 42 days. CH coatings have been shown as a beneficial electrode material compatible with long-term delivery of high current, high energy waveforms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 101 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 22%
Student > Master 15 15%
Researcher 12 12%
Student > Bachelor 7 7%
Professor 5 5%
Other 11 11%
Unknown 29 29%
Readers by discipline Count As %
Engineering 33 33%
Materials Science 10 10%
Chemistry 7 7%
Medicine and Dentistry 5 5%
Neuroscience 4 4%
Other 13 13%
Unknown 29 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2018.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#10,138
of 11,542 outputs
Outputs of similar age
#390,931
of 450,898 outputs
Outputs of similar age from Frontiers in Neuroscience
#187
of 205 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 450,898 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 205 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.