↓ Skip to main content

Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices

Overview of attention for article published in Frontiers in Neuroscience, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
Published in
Frontiers in Neuroscience, February 2018
DOI 10.3389/fnins.2018.00057
Pubmed ID
Authors

Konstantin Zarudnyi, Adnan Mehonic, Luca Montesi, Mark Buckwell, Stephen Hudziak, Anthony J. Kenyon

Abstract

Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiOx) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 16%
Researcher 8 16%
Student > Master 7 14%
Student > Ph. D. Student 7 14%
Student > Doctoral Student 3 6%
Other 4 8%
Unknown 12 24%
Readers by discipline Count As %
Engineering 16 33%
Physics and Astronomy 7 14%
Materials Science 7 14%
Neuroscience 2 4%
Agricultural and Biological Sciences 1 2%
Other 4 8%
Unknown 12 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2018.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#7,427
of 11,542 outputs
Outputs of similar age
#270,420
of 447,797 outputs
Outputs of similar age from Frontiers in Neuroscience
#155
of 215 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 447,797 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 215 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.