↓ Skip to main content

Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations

Overview of attention for article published in Frontiers in Neuroscience, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
10 X users
facebook
1 Facebook page

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
106 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations
Published in
Frontiers in Neuroscience, March 2018
DOI 10.3389/fnins.2018.00130
Pubmed ID
Authors

Attila Korik, Ronen Sosnik, Nazmul Siddique, Damien Coyle

Abstract

Objective: To date, motion trajectory prediction (MTP) of a limb from non-invasive electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding 2D and 3D arm movements i.e., executed arm movements. Decoding of observed or imagined 3D movements has been demonstrated with limited success and only reported in a few studies. MTP studies normally use EEG potentials filtered in the low delta (~1 Hz) band for reconstructing the trajectory of an executed or an imagined/observed movement. In contrast to MTP, multiclass classification based sensorimotor rhythm brain-computer interfaces aim to classify movements using the power spectral density of mu (8-12 Hz) and beta (12-28 Hz) bands. Approach: We investigated if replacing the standard potentials time-series input with a power spectral density based bandpower time-series improves trajectory decoding accuracy of kinesthetically imagined 3D hand movement tasks (i.e., imagined 3D trajectory of the hand joint) and whether imagined 3D hand movements kinematics are encoded also in mu and beta bands. Twelve naïve subjects were asked to generate or imagine generating pointing movements with their right dominant arm to four targets distributed in 3D space in synchrony with an auditory cue (beep). Main results: Using the bandpower time-series based model, the highest decoding accuracy for motor execution was observed in mu and beta bands whilst for imagined movements the low gamma (28-40 Hz) band was also observed to improve decoding accuracy for some subjects. Moreover, for both (executed and imagined) movements, the bandpower time-series model with mu, beta, and low gamma bands produced significantly higher reconstruction accuracy than the commonly used potential time-series model and delta oscillations. Significance: Contrary to many studies that investigated only executed hand movements and recommend using delta oscillations for decoding directional information of a single limb joint, our findings suggest that motor kinematics for imagined movements are reflected mostly in power spectral density of mu, beta and low gamma bands, and that these bands may be most informative for decoding 3D trajectories of imagined limb movements.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 106 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 106 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 27%
Student > Master 17 16%
Researcher 11 10%
Student > Bachelor 7 7%
Student > Doctoral Student 6 6%
Other 12 11%
Unknown 24 23%
Readers by discipline Count As %
Engineering 28 26%
Neuroscience 14 13%
Computer Science 13 12%
Psychology 5 5%
Medicine and Dentistry 4 4%
Other 9 8%
Unknown 33 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2018.
All research outputs
#5,311,777
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,023
of 11,542 outputs
Outputs of similar age
#96,847
of 348,083 outputs
Outputs of similar age from Frontiers in Neuroscience
#93
of 263 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,083 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 263 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.