↓ Skip to main content

DGCR8 Promotes Neural Progenitor Expansion and Represses Neurogenesis in the Mouse Embryonic Neocortex

Overview of attention for article published in Frontiers in Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (62nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DGCR8 Promotes Neural Progenitor Expansion and Represses Neurogenesis in the Mouse Embryonic Neocortex
Published in
Frontiers in Neuroscience, April 2018
DOI 10.3389/fnins.2018.00281
Pubmed ID
Authors

Nadin Hoffmann, Stefan C. Weise, Federica Marinaro, Tanja Vogel, Davide De Pietri Tonelli

Abstract

DGCR8 and DROSHA are the minimal functional core of the Microprocessor complex essential for biogenesis of canonical microRNAs and for the processing of other RNAs. Conditional deletion of Dgcr8 and Drosha in the murine telencephalon indicated that these proteins exert crucial functions in corticogenesis. The identification of mechanisms of DGCR8- or DROSHA-dependent regulation of gene expression in conditional knockout mice are often complicated by massive apoptosis. Here, to investigate DGCR8 functions on amplification/differentiation of neural progenitors cells (NPCs) in corticogenesis, we overexpress Dgcr8 in the mouse telencephalon, by in utero electroporation (IUEp). We find that DGCR8 promotes the expansion of NPC pools and represses neurogenesis, in absence of apoptosis, thus overcoming the usual limitations of Dgcr8 knockout-based approach. Interestingly, DGCR8 selectively promotes basal progenitor amplification at later developmental stages, entailing intriguing implications for neocortical expansion in evolution. Finally, despite a 3- to 5-fold increase of DGCR8 level in the mouse telencephalon, the composition, target preference and function of the DROSHA-dependent Microprocessor complex remain unaltered. Thus, we propose that DGCR8-dependent modulation of gene expression in corticogenesis is more complex than previously known, and possibly DROSHA-independent.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 26%
Student > Bachelor 6 19%
Student > Master 3 10%
Researcher 3 10%
Student > Postgraduate 1 3%
Other 0 0%
Unknown 10 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 19%
Neuroscience 6 19%
Agricultural and Biological Sciences 5 16%
Veterinary Science and Veterinary Medicine 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 6%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2018.
All research outputs
#7,782,070
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#4,921
of 11,542 outputs
Outputs of similar age
#124,257
of 338,552 outputs
Outputs of similar age from Frontiers in Neuroscience
#112
of 245 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,552 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.
We're also able to compare this research output to 245 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.