↓ Skip to main content

When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics

Overview of attention for article published in Frontiers in Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics
Published in
Frontiers in Neuroscience, April 2018
DOI 10.3389/fnins.2018.00293
Pubmed ID
Authors

Kevin Joseph, Soheil Mottaghi, Olaf Christ, Thomas J. Feuerstein, Ulrich G. Hofmann

Abstract

Modern electroceuticals are bound to employ the usage of electrical high frequency (130-180 Hz) stimulation carried out under closed loop control, most prominent in the case of movement disorders. However, particular challenges are faced when electrical recordings of neuronal tissue are carried out during high frequency electrical stimulation, both in-vivo and in-vitro. This stimulation produces undesired artifacts and can render the recorded signal only partially useful. The extent of these artifacts is often reduced by temporarily grounding the recording input during stimulation pulses. In the following study, we quantify the effects of this method, "blanking," on the spike count and spike train statistics. Starting from a theoretical standpoint, we calculate a loss in the absolute number of action potentials, depending on: width of the blanking window, frequency of stimulation, and intrinsic neuronal activity. These calculations were then corroborated by actual high signal to noise ratio (SNR) single cell recordings. We state that, for clinically relevant frequencies of 130 Hz (used for movement disorders) and realistic blanking windows of 2 ms, up to 27% of actual existing spikes are lost. We strongly advice cautioned use of the blanking method when spike rate quantification is attempted. Blanking (artifact removal by temporarily grounding input), depending on recording parameters, can lead to significant spike loss. Very careful use of blanking circuits is advised.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 21%
Student > Ph. D. Student 3 21%
Student > Postgraduate 2 14%
Student > Bachelor 1 7%
Researcher 1 7%
Other 1 7%
Unknown 3 21%
Readers by discipline Count As %
Engineering 6 43%
Physics and Astronomy 1 7%
Computer Science 1 7%
Neuroscience 1 7%
Medicine and Dentistry 1 7%
Other 0 0%
Unknown 4 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2019.
All research outputs
#15,175,718
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#6,404
of 11,542 outputs
Outputs of similar age
#179,831
of 338,552 outputs
Outputs of similar age from Frontiers in Neuroscience
#154
of 245 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,552 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 245 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.