↓ Skip to main content

Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat

Overview of attention for article published in Frontiers in Neuroscience, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
15 X users
facebook
1 Facebook page

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat
Published in
Frontiers in Neuroscience, May 2018
DOI 10.3389/fnins.2018.00349
Pubmed ID
Authors

Nathaniel J. Zuk, Laurel H. Carney, Edmund C. Lalor

Abstract

Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 26%
Student > Master 4 10%
Researcher 4 10%
Student > Doctoral Student 3 7%
Student > Postgraduate 3 7%
Other 5 12%
Unknown 12 29%
Readers by discipline Count As %
Neuroscience 12 29%
Psychology 6 14%
Computer Science 2 5%
Agricultural and Biological Sciences 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 4 10%
Unknown 16 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 August 2018.
All research outputs
#4,514,329
of 25,382,440 outputs
Outputs from Frontiers in Neuroscience
#3,523
of 11,542 outputs
Outputs of similar age
#81,002
of 344,685 outputs
Outputs of similar age from Frontiers in Neuroscience
#79
of 234 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,685 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 234 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.