↓ Skip to main content

Nano-Architectural Approaches for Improved Intracortical Interface Technologies

Overview of attention for article published in Frontiers in Neuroscience, July 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nano-Architectural Approaches for Improved Intracortical Interface Technologies
Published in
Frontiers in Neuroscience, July 2018
DOI 10.3389/fnins.2018.00456
Pubmed ID
Authors

Youjoung Kim, Seth M. Meade, Keying Chen, He Feng, Jacob Rayyan, Allison Hess-Dunning, Evon S. Ereifej

Abstract

Intracortical microelectrodes (IME) are neural devices that initially were designed to function as neuroscience tools to enable researchers to understand the nervous system. Over the years, technology that aids interfacing with the nervous system has allowed the ability to treat patients with a wide range of neurological injuries and diseases. Despite the substantial success that has been demonstrated using IME in neural interface applications, these implants eventually fail due to loss of quality recording signals. Recent strategies to improve interfacing with the nervous system have been inspired by methods that mimic the native tissue. This review focusses on one strategy in particular, nano-architecture, a term we introduce that encompasses the approach of roughening the surface of the implant. Various nano-architecture approaches have been hypothesized to improve the biocompatibility of IMEs, enhance the recording quality, and increase the longevity of the implant. This review will begin by introducing IME technology and discuss the challenges facing the clinical deployment of IME technology. The biological inspiration of nano-architecture approaches will be explained as well as leading fabrication methods used to create nano-architecture and their limitations. A review of the effects of nano-architecture surfaces on neural cells will be examined, depicting the various cellular responses to these modified surfaces in both in vitro and pre-clinical models. The proposed mechanism elucidating the ability of nano-architectures to influence cellular phenotype will be considered. Finally, the frontiers of next generation nano-architecture IMEs will be identified, with perspective given on the future impact of this interfacing approach.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 21%
Researcher 12 15%
Student > Bachelor 9 11%
Student > Master 8 10%
Student > Doctoral Student 4 5%
Other 10 12%
Unknown 22 27%
Readers by discipline Count As %
Engineering 13 16%
Neuroscience 8 10%
Biochemistry, Genetics and Molecular Biology 7 9%
Materials Science 5 6%
Physics and Astronomy 4 5%
Other 18 22%
Unknown 27 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2022.
All research outputs
#7,000,448
of 25,385,509 outputs
Outputs from Frontiers in Neuroscience
#4,539
of 11,542 outputs
Outputs of similar age
#106,947
of 323,052 outputs
Outputs of similar age from Frontiers in Neuroscience
#104
of 230 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,052 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 230 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.