↓ Skip to main content

Influence of Individual Differences in fMRI-Based Pain Prediction Models on Between-Individual Prediction Performance

Overview of attention for article published in Frontiers in Neuroscience, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of Individual Differences in fMRI-Based Pain Prediction Models on Between-Individual Prediction Performance
Published in
Frontiers in Neuroscience, August 2018
DOI 10.3389/fnins.2018.00569
Pubmed ID
Authors

Qianqian Lin, Linling Li, Jia Liu, Weixiang Liu, Gan Huang, Zhiguo Zhang

Abstract

Decoding subjective pain perception from functional magnetic resonance imaging (fMRI) data using machine learning technique is gaining a growing interest. Despite the well-documented individual differences in pain experience and brain responses, it still remains unclear how and to what extent these individual differences affect the performance of between-individual fMRI-based pain prediction. The present study is aimed to examine the relationship between individual differences in pain prediction models and between-individual prediction error, and, further, to identify brain regions that contribute to between-individual prediction error. To this end, we collected and analyzed fMRI data and pain ratings in a laser-evoked pain experiment. By correlating different types of individual difference metrics with between-individual prediction error, we are able to quantify the influence of these individual differences on prediction performance and reveal a set of brain regions whose activities are related to prediction error. Interestingly, we found that the precuneus, which does not have predictive capability to pain, could also affect the prediction error. This study elucidates the influence of interindividual variability in pain on the between-individual prediction performance, and the results will be useful for the design of more accurate and robust fMRI-based pain prediction models.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 28%
Student > Master 5 17%
Student > Bachelor 3 10%
Researcher 2 7%
Student > Postgraduate 2 7%
Other 4 14%
Unknown 5 17%
Readers by discipline Count As %
Neuroscience 8 28%
Engineering 4 14%
Medicine and Dentistry 3 10%
Psychology 2 7%
Agricultural and Biological Sciences 2 7%
Other 2 7%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 August 2018.
All research outputs
#15,403,661
of 25,845,895 outputs
Outputs from Frontiers in Neuroscience
#6,428
of 11,720 outputs
Outputs of similar age
#179,728
of 341,748 outputs
Outputs of similar age from Frontiers in Neuroscience
#143
of 237 outputs
Altmetric has tracked 25,845,895 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,720 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,748 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.