↓ Skip to main content

Event Related Potentials Index Rapid Recalibration to Audiovisual Temporal Asynchrony

Overview of attention for article published in Frontiers in Integrative Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Event Related Potentials Index Rapid Recalibration to Audiovisual Temporal Asynchrony
Published in
Frontiers in Integrative Neuroscience, March 2017
DOI 10.3389/fnint.2017.00008
Pubmed ID
Authors

David M. Simon, Jean-Paul Noel, Mark T. Wallace

Abstract

Asynchronous arrival of multisensory information at the periphery is a ubiquitous property of signals in the natural environment due to differences in the propagation time of light and sound. Rapid adaptation to these asynchronies is crucial for the appropriate integration of these multisensory signals, which in turn is a fundamental neurobiological process in creating a coherent perceptual representation of our dynamic world. Indeed, multisensory temporal recalibration has been shown to occur at the single trial level, yet the mechanistic basis of this rapid adaptation is unknown. Here, we investigated the neural basis of rapid recalibration to audiovisual temporal asynchrony in human participants using a combination of psychophysics and electroencephalography (EEG). Consistent with previous reports, participant's perception of audiovisual temporal synchrony on a given trial (t) was influenced by the temporal structure of stimuli on the previous trial (t-1). When examined physiologically, event related potentials (ERPs) were found to be modulated by the temporal structure of the previous trial, manifesting as late differences (>125 ms post second-stimulus onset) in central and parietal positivity on trials with large stimulus onset asynchronies (SOAs). These findings indicate that single trial adaptation to audiovisual temporal asynchrony is reflected in modulations of late evoked components that have previously been linked to stimulus evaluation and decision-making.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 77 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 23%
Student > Master 16 21%
Researcher 9 12%
Student > Bachelor 6 8%
Professor 5 6%
Other 14 18%
Unknown 10 13%
Readers by discipline Count As %
Psychology 30 38%
Neuroscience 13 17%
Computer Science 4 5%
Agricultural and Biological Sciences 3 4%
Medicine and Dentistry 3 4%
Other 11 14%
Unknown 14 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2017.
All research outputs
#14,056,410
of 22,961,203 outputs
Outputs from Frontiers in Integrative Neuroscience
#480
of 857 outputs
Outputs of similar age
#167,968
of 309,332 outputs
Outputs of similar age from Frontiers in Integrative Neuroscience
#3
of 8 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 857 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,332 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.