↓ Skip to main content

Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

Overview of attention for article published in Frontiers in Integrative Neuroscience, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences
Published in
Frontiers in Integrative Neuroscience, January 2018
DOI 10.3389/fnint.2018.00004
Pubmed ID
Authors

Stanislava Knyazeva, Elena Selezneva, Alexander Gorkin, Nikolaos C. Aggelopoulos, Michael Brosch

Abstract

This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 37%
Student > Doctoral Student 3 16%
Student > Bachelor 2 11%
Researcher 2 11%
Student > Master 2 11%
Other 1 5%
Unknown 2 11%
Readers by discipline Count As %
Neuroscience 7 37%
Agricultural and Biological Sciences 5 26%
Engineering 2 11%
Unknown 5 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2019.
All research outputs
#14,969,891
of 24,226,848 outputs
Outputs from Frontiers in Integrative Neuroscience
#501
of 888 outputs
Outputs of similar age
#240,783
of 448,281 outputs
Outputs of similar age from Frontiers in Integrative Neuroscience
#12
of 16 outputs
Altmetric has tracked 24,226,848 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 888 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.9. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,281 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.