↓ Skip to main content

Fatty acids increase neuronal hypertrophy of Pten knockdown neurons

Overview of attention for article published in Frontiers in Molecular Neuroscience, April 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fatty acids increase neuronal hypertrophy of Pten knockdown neurons
Published in
Frontiers in Molecular Neuroscience, April 2014
DOI 10.3389/fnmol.2014.00030
Pubmed ID
Authors

Catherine J. Fricano, Tyrone DeSpenza, Paul W. Frazel, Meijie Li, A. James O'Malley, Gary L. Westbrook, Bryan W. Luikart

Abstract

Phosphatase and tensin homolog (Pten) catalyzes the reverse reaction of PI3K by dephosphorylating PIP3 to PIP2. This negatively regulates downstream Akt/mTOR/S6 signaling resulting in decreased cellular growth and proliferation. Co-injection of a lentivirus knocking Pten down with a control lentivirus allows us to compare the effects of Pten knockdown between individual neurons within the same animal. We find that knockdown of Pten results in neuronal hypertrophy by 21 days post-injection. This neuronal hypertrophy is correlated with increased p-S6 and p-mTOR in individual neurons. We used this system to test whether an environmental factor that has been implicated in cellular hypertrophy could influence the severity of the Pten knockdown-induced hypertrophy. Implantation of mini-osmotic pumps delivering fatty acids results in increased neuronal hypertrophy and p-S6/p-mTOR staining. These hypertrophic effects were reversed in response to rapamycin treatment. However, we did not observe a similar increase in hypertrophy in response to dietary manipulations of fatty acids. Thus, we conclude that by driving growth signaling with fatty acids and knocking down a critical regulator of growth, Pten, we are able to observe an additive morphological phenotype of increased soma size mediated by the mTOR pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 36%
Researcher 8 32%
Student > Doctoral Student 2 8%
Student > Postgraduate 2 8%
Professor 1 4%
Other 2 8%
Unknown 1 4%
Readers by discipline Count As %
Neuroscience 9 36%
Agricultural and Biological Sciences 8 32%
Medicine and Dentistry 4 16%
Immunology and Microbiology 1 4%
Materials Science 1 4%
Other 0 0%
Unknown 2 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2014.
All research outputs
#15,299,919
of 22,754,104 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,831
of 2,849 outputs
Outputs of similar age
#133,870
of 227,082 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#11
of 20 outputs
Altmetric has tracked 22,754,104 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,849 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,082 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.