↓ Skip to main content

A transgenic mouse line for collecting ribosome-bound mRNA using the tetracycline transactivator system

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A transgenic mouse line for collecting ribosome-bound mRNA using the tetracycline transactivator system
Published in
Frontiers in Molecular Neuroscience, October 2014
DOI 10.3389/fnmol.2014.00082
Pubmed ID
Authors

Laurel Drane, Joshua A. Ainsley, Mark R. Mayford, Leon G. Reijmers

Abstract

Acquiring the gene expression profiles of specific neuronal cell-types is important for understanding their molecular identities. Genome-wide gene expression profiles of genetically defined cell-types can be acquired by collecting and sequencing mRNA that is bound to epitope-tagged ribosomes (TRAP; translating ribosome affinity purification). Here, we introduce a transgenic mouse model that combines the TRAP technique with the tetracycline transactivator (tTA) system by expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a) under control of the tetracycline response element (tetO-TRAP). This allows both spatial control of EGFP-L10a expression through cell-type specific tTA expression, as well as temporal regulation by inhibiting transgene expression through the administration of doxycycline. We show that crossing tetO-TRAP mice with transgenic mice expressing tTA under the Camk2a promoter (Camk2a-tTA) results in offspring with cell-type specific expression of EGFP-L10a in CA1 pyramidal neurons and medium spiny neurons in the striatum. Co-immunoprecipitation confirmed that EGFP-L10a integrates into a functional ribosomal complex. In addition, collection of ribosome-bound mRNA from the hippocampus yielded the expected enrichment of genes expressed in CA1 pyramidal neurons, as well as a depletion of genes expressed in other hippocampal cell-types. Finally, we show that crossing tetO-TRAP mice with transgenic Fos-tTA mice enables the expression of EGFP-L10a in CA1 pyramidal neurons that are activated during a fear conditioning trial. The tetO-TRAP mouse can be combined with other tTA mouse lines to enable gene expression profiling of a variety of different cell-types.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 1%
Italy 1 1%
Unknown 82 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 23%
Researcher 19 23%
Student > Doctoral Student 8 10%
Professor > Associate Professor 8 10%
Student > Postgraduate 6 7%
Other 12 14%
Unknown 12 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 36%
Neuroscience 20 24%
Biochemistry, Genetics and Molecular Biology 8 10%
Medicine and Dentistry 6 7%
Nursing and Health Professions 1 1%
Other 3 4%
Unknown 16 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2014.
All research outputs
#14,204,262
of 22,770,070 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,525
of 2,860 outputs
Outputs of similar age
#135,137
of 260,656 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#8
of 17 outputs
Altmetric has tracked 22,770,070 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,860 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 260,656 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.