↓ Skip to main content

Mice Overexpressing Both Non-Mutated Human SOD1 and Mutated SOD1G93A Genes: A Competent Experimental Model for Studying Iron Metabolism in Amyotrophic Lateral Sclerosis

Overview of attention for article published in Frontiers in Molecular Neuroscience, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mice Overexpressing Both Non-Mutated Human SOD1 and Mutated SOD1G93A Genes: A Competent Experimental Model for Studying Iron Metabolism in Amyotrophic Lateral Sclerosis
Published in
Frontiers in Molecular Neuroscience, January 2016
DOI 10.3389/fnmol.2015.00082
Pubmed ID
Authors

Anna Gajowiak, Agnieszka Styś, Rafał R. Starzyński, Aleksandra Bednarz, Małgorzata Lenartowicz, Robert Staroń, Paweł Lipiński

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS) and associated with mutations, frequently in the superoxide dismutase 1 (SOD1) gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS - transgenic mice overexpressing human mutated SOD1(G93A) gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month-old and symptomatic, 4-month-old SOD1(G93A) mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1(G93A) genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 31%
Student > Bachelor 8 19%
Student > Master 4 10%
Researcher 3 7%
Student > Doctoral Student 2 5%
Other 9 21%
Unknown 3 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 26%
Neuroscience 7 17%
Medicine and Dentistry 6 14%
Agricultural and Biological Sciences 6 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 4 10%
Unknown 6 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 January 2016.
All research outputs
#3,201,497
of 22,837,982 outputs
Outputs from Frontiers in Molecular Neuroscience
#503
of 2,881 outputs
Outputs of similar age
#58,386
of 393,663 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#7
of 34 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,881 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,663 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.