↓ Skip to main content

Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

Overview of attention for article published in Frontiers in Molecular Neuroscience, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG
Published in
Frontiers in Molecular Neuroscience, April 2016
DOI 10.3389/fnmol.2016.00021
Pubmed ID
Authors

Najat Al-Bashir, Wilfredo Mellado, Marie T. Filbin

Abstract

Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG's inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Student > Doctoral Student 4 21%
Researcher 3 16%
Professor > Associate Professor 2 11%
Student > Master 2 11%
Other 3 16%
Readers by discipline Count As %
Neuroscience 8 42%
Biochemistry, Genetics and Molecular Biology 5 26%
Agricultural and Biological Sciences 3 16%
Medicine and Dentistry 1 5%
Chemistry 1 5%
Other 0 0%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2016.
All research outputs
#14,193,381
of 22,858,915 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,510
of 2,888 outputs
Outputs of similar age
#158,861
of 300,229 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#16
of 21 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,888 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,229 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.