↓ Skip to main content

Aberrant Expression of Histone Deacetylases 4 in Cognitive Disorders: Molecular Mechanisms and a Potential Target

Overview of attention for article published in Frontiers in Molecular Neuroscience, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aberrant Expression of Histone Deacetylases 4 in Cognitive Disorders: Molecular Mechanisms and a Potential Target
Published in
Frontiers in Molecular Neuroscience, November 2016
DOI 10.3389/fnmol.2016.00114
Pubmed ID
Authors

Yili Wu, Fei Hou, Xin Wang, Qingsheng Kong, Xiaolin Han, Bo Bai

Abstract

Histone acetylation is a major mechanism of chromatin remodeling, contributing to epigenetic regulation of gene transcription. Histone deacetylases (HDACs) are involved in both physiological and pathological conditions by regulating the status of histone acetylation. Although histone deacetylase 4 (HDAC4), a member of the HDAC family, may lack HDAC activity, it is actively involved in regulating the transcription of genes involved in synaptic plasticity, neuronal survival, and neurodevelopment by interacting with transcription factors, signal transduction molecules and HDAC3, another member of the HDAC family. HDAC4 is highly expressed in brain and its homeostasis is crucial for the maintenance of cognitive function. Accumulated evidence shows that HDAC4 expression is dysregulated in several brain disorders, including neurodegenerative diseases and mental disorders. Moreover, cognitive impairment is a characteristic feature of these diseases. It indicates that aberrant HDAC4 expression plays a pivotal role in cognitive impairment of these disorders. This review aims to describe the current understanding of HDAC4's role in the maintenance of cognitive function and its dysregulation in neurodegenerative diseases and mental disorders, discuss underlying molecular mechanisms, and provide an outlook into targeting HDAC4 as a potential therapeutic approach to rescue cognitive impairment in these diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 47 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 29%
Researcher 6 13%
Student > Bachelor 3 6%
Student > Doctoral Student 2 4%
Student > Master 2 4%
Other 5 10%
Unknown 16 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 23%
Neuroscience 9 19%
Agricultural and Biological Sciences 3 6%
Medicine and Dentistry 3 6%
Business, Management and Accounting 1 2%
Other 4 8%
Unknown 17 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2016.
All research outputs
#14,867,424
of 22,896,955 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,669
of 2,894 outputs
Outputs of similar age
#186,519
of 311,687 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#32
of 59 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,894 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,687 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.