↓ Skip to main content

Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders

Overview of attention for article published in Frontiers in Molecular Neuroscience, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders
Published in
Frontiers in Molecular Neuroscience, January 2017
DOI 10.3389/fnmol.2016.00162
Pubmed ID
Authors

Vera G. Volpi, Thierry Touvier, Maurizio D'Antonio

Abstract

Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 16 21%
Student > Ph. D. Student 14 19%
Researcher 13 17%
Student > Bachelor 8 11%
Student > Doctoral Student 4 5%
Other 12 16%
Unknown 8 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 28 37%
Neuroscience 15 20%
Agricultural and Biological Sciences 8 11%
Medicine and Dentistry 7 9%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Other 5 7%
Unknown 9 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 January 2017.
All research outputs
#20,376,559
of 22,925,760 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,483
of 2,895 outputs
Outputs of similar age
#356,028
of 421,125 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#71
of 83 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,895 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,125 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.