↓ Skip to main content

Mest/Peg1 Is Essential for the Development and Maintenance of a SNc Neuronal Subset

Overview of attention for article published in Frontiers in Molecular Neuroscience, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mest/Peg1 Is Essential for the Development and Maintenance of a SNc Neuronal Subset
Published in
Frontiers in Molecular Neuroscience, January 2017
DOI 10.3389/fnmol.2016.00166
Pubmed ID
Authors

Simone Mesman, Johannes A. van Hooft, Marten P. Smidt

Abstract

Mesodiencephalic dopaminergic (mdDA) neurons originate at the floor plate and floor plate-basal plate boundary of the midbrain ventricular zone. During development mdDA neurons are specified by a unique set of transcription factors and signaling cascades, to form the different molecular subsets of the mdDA neuronal population. In a time series micro-array study performed previously, mesoderm specific transcript (Mest) was found to be one of the most upregulated genes during early mdDA neuronal development. Here, we show that Mest transcript is expressed in the midbrain throughout development and becomes restricted to the substantia nigra (SNc) at late stages. In Mest KO animals mdDA neurons are progressively lost in the adult, mostly affecting the SNc, reflected by a 50% decrease of TH protein and DA release in the striatum and a reduction of climbing behavior. Analysis of Lrp6 KO embryos suggest a subtle opposite phenotype to the Mest KO, hinting toward the possibility that specific loss of mdDA neurons in Mest ablated animals could be due to affected WNT-signaling. Interestingly, the mdDA neuronal region affected by the loss of Mest remains relatively unaffected in Pitx3 mutants, suggesting that both genes are essential for the development and/or maintenance of different mdDA neuronal subsets within the SNc. Overall, the neuroanatomical and phenotypical consequences detected upon the loss of Mest, resemble the loss of SNc neurons and loss of movement control as seen in Parkinson's Disease (PD), suggesting that the Mest mouse model may be used as a model-system for PD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 27%
Researcher 6 27%
Student > Bachelor 2 9%
Student > Master 1 5%
Professor 1 5%
Other 0 0%
Unknown 6 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 27%
Agricultural and Biological Sciences 4 18%
Neuroscience 2 9%
Medicine and Dentistry 1 5%
Physics and Astronomy 1 5%
Other 0 0%
Unknown 8 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2017.
All research outputs
#20,390,619
of 22,940,083 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,483
of 2,896 outputs
Outputs of similar age
#356,820
of 421,590 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#70
of 83 outputs
Altmetric has tracked 22,940,083 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,896 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,590 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.