↓ Skip to main content

Granulostasis: Protein Quality Control of RNP Granules

Overview of attention for article published in Frontiers in Molecular Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
1 news outlet
twitter
7 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
111 Dimensions

Readers on

mendeley
259 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Granulostasis: Protein Quality Control of RNP Granules
Published in
Frontiers in Molecular Neuroscience, March 2017
DOI 10.3389/fnmol.2017.00084
Pubmed ID
Authors

Simon Alberti, Daniel Mateju, Laura Mediani, Serena Carra

Abstract

Ribonucleoprotein (RNP) granules transport, store, or degrade messenger RNAs, thereby indirectly regulating protein synthesis. Normally, RNP granules are highly dynamic compartments. However, because of aging or severe environmental stress, RNP granules, in particular stress granules (SGs), convert into solid, aggregate-like inclusions. There is increasing evidence that such RNA-protein inclusions are associated with several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), fronto-temporal dementia (FTD) and Alzheimer's disease (AD). Thus, understanding what triggers the conversion of RNP granules into aggregates and identifying the cellular players that control RNP granules will be critical to develop treatments for these diseases. In this review article, we discuss recent insight into RNP and SG formation. More specifically, we examine the evidence for liquid-liquid phase separation (LLPS) as an organizing principle of RNP granules and the role of aggregation-prone RNA-binding proteins (RBPs) in this process. We further discuss recent findings that liquid-like SGs can sequester misfolded proteins, which promote an aberrant conversion of liquid SGs into solid aggregates. Importantly, very recent studies show that a specific protein quality control (PQC) process prevents the accumulation of misfolding-prone proteins in SGs and, by doing so, maintains the dynamic state of SGs. This quality control process has been referred to as granulostasis and it relies on the specific action of the HSPB8-BAG3-HSP70 complex. Additional players such as p97/valosin containing protein (VCP) and other molecular chaperones (e.g., HSPB1) participate, directly or indirectly, in granulostasis, and ensure the timely elimination of defective ribosomal products and other misfolded proteins from SGs. Finally, we discuss recent findings that, in the stress recovery phase, SGs are preferentially disassembled with the assistance of chaperones, and we discuss evidence for a back-up system that targets aberrant SGs to the aggresome for autophagy-mediated clearance. Altogether the findings discussed here provide evidence for an intricate network of interactions between RNP granules and various components of the PQC machinery. Molecular chaperones in particular are emerging as key players that control the composition and dynamics of RNP granules, which may be important to protect against age-related diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 259 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 259 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 66 25%
Researcher 31 12%
Student > Master 31 12%
Student > Bachelor 25 10%
Student > Doctoral Student 11 4%
Other 35 14%
Unknown 60 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 96 37%
Agricultural and Biological Sciences 35 14%
Neuroscience 27 10%
Chemistry 8 3%
Medicine and Dentistry 6 2%
Other 22 8%
Unknown 65 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 April 2018.
All research outputs
#2,016,194
of 22,958,253 outputs
Outputs from Frontiers in Molecular Neuroscience
#174
of 2,900 outputs
Outputs of similar age
#40,926
of 308,944 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#7
of 105 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,900 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,944 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 105 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.