↓ Skip to main content

Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders

Overview of attention for article published in Frontiers in Molecular Neuroscience, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders
Published in
Frontiers in Molecular Neuroscience, June 2017
DOI 10.3389/fnmol.2017.00212
Pubmed ID
Authors

Annalisa Alfieri, Oksana Sorokina, Annie Adrait, Costanza Angelini, Isabella Russo, Alessandro Morellato, Michela Matteoli, Elisabetta Menna, Elisabetta Boeri Erba, Colin McLean, J. Douglas Armstrong, Ugo Ala, Joseph D. Buxbaum, Alfredo Brusco, Yohann Couté, Silvia De Rubeis, Emilia Turco, Paola Defilippi

Abstract

Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 19%
Student > Master 16 18%
Student > Ph. D. Student 10 11%
Student > Bachelor 8 9%
Student > Postgraduate 5 6%
Other 14 16%
Unknown 20 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 18%
Medicine and Dentistry 11 12%
Neuroscience 11 12%
Psychology 9 10%
Agricultural and Biological Sciences 9 10%
Other 10 11%
Unknown 24 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 July 2017.
All research outputs
#14,811,598
of 24,945,754 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,467
of 3,262 outputs
Outputs of similar age
#165,168
of 319,996 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#52
of 119 outputs
Altmetric has tracked 24,945,754 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,262 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,996 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.