↓ Skip to main content

The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea

Overview of attention for article published in Frontiers in Molecular Neuroscience, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea
Published in
Frontiers in Molecular Neuroscience, August 2017
DOI 10.3389/fnmol.2017.00239
Pubmed ID
Authors

Wei Liu, Annelies Schrott-Fischer, Rudolf Glueckert, Heval Benav, Helge Rask-Andersen

Abstract

Background: The cochlea produces an electric field potential essential for hair cell transduction and hearing. This biological "battery" is situated in the lateral wall of the cochlea and contains molecular machinery that secretes and recycles K(+) ions. Its functioning depends on junctional proteins that restrict the para-cellular escape of ions. The tight junction protein Claudin-11 has been found to be one of the major constituents of this barrier that maintains ion gradients (Gow et al., 2004; Kitajiri et al., 2004a). We are the first to elucidate the human Claudin-11 framework and the associated ion transport machinery using super-resolution fluorescence illumination microscopy (SR-SIM). Methods: Archival cochleae obtained during meningioma surgery were used for SR-SIM together with transmission electron microscopy after ethical consent. Results: Claudin-11-expressing cells formed parallel tight junction lamellae that insulated the epithelial syncytium of the stria vascularis and extended to the suprastrial region. Intercellular gap junctions were found between the barrier cells and fibrocytes. Conclusion: Transmission electron microscopy, confocal microscopy and SR-SIM revealed exclusive cell specialization in the various subdomains of the lateral wall of the human cochlea. The Claudin-11-expressing cells exhibited both conductor and isolator characteristics, and these micro-porous separators may selectively mediate the movement of charged units to the intrastrial space in a manner that is analogous to a conventional electrochemical "battery." The function and relevance of this battery for the development of inner ear disease are discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 25%
Unspecified 4 10%
Student > Master 4 10%
Student > Ph. D. Student 4 10%
Student > Doctoral Student 2 5%
Other 6 15%
Unknown 10 25%
Readers by discipline Count As %
Medicine and Dentistry 10 25%
Biochemistry, Genetics and Molecular Biology 5 13%
Unspecified 4 10%
Engineering 4 10%
Neuroscience 2 5%
Other 2 5%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2021.
All research outputs
#13,565,862
of 22,997,544 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,323
of 2,904 outputs
Outputs of similar age
#160,775
of 318,015 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#38
of 102 outputs
Altmetric has tracked 22,997,544 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,904 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,015 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.