↓ Skip to main content

Hearing Loss Controlled by Optogenetic Stimulation of Nonexcitable Nonglial Cells in the Cochlea of the Inner Ear

Overview of attention for article published in Frontiers in Molecular Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hearing Loss Controlled by Optogenetic Stimulation of Nonexcitable Nonglial Cells in the Cochlea of the Inner Ear
Published in
Frontiers in Molecular Neuroscience, September 2017
DOI 10.3389/fnmol.2017.00300
Pubmed ID
Authors

Mitsuo P. Sato, Taiga Higuchi, Fumiaki Nin, Genki Ogata, Seishiro Sawamura, Takamasa Yoshida, Takeru Ota, Karin Hori, Shizuo Komune, Satoru Uetsuka, Samuel Choi, Masatsugu Masuda, Takahisa Watabe, Sho Kanzaki, Kaoru Ogawa, Hidenori Inohara, Shuichi Sakamoto, Hirohide Takebayashi, Katsumi Doi, Kenji F. Tanaka, Hiroshi Hibino

Abstract

Light-gated ion channels and transporters have been applied to a broad array of excitable cells including neurons, cardiac myocytes, skeletal muscle cells and pancreatic β-cells in an organism to clarify their physiological and pathological roles. Nonetheless, among nonexcitable cells, only glial cells have been studied in vivo by this approach. Here, by optogenetic stimulation of a different nonexcitable cell type in the cochlea of the inner ear, we induce and control hearing loss. To our knowledge, deafness animal models using optogenetics have not yet been established. Analysis of transgenic mice expressing channelrhodopsin-2 (ChR2) induced by an oligodendrocyte-specific promoter identified this channel in nonglial cells-melanocytes-of an epithelial-like tissue in the cochlea. The membrane potential of these cells underlies a highly positive potential in a K(+)-rich extracellular solution, endolymph; this electrical property is essential for hearing. Illumination of the cochlea to activate ChR2 and depolarize the melanocytes significantly impaired hearing within a few minutes, accompanied by a reduction in the endolymphatic potential. After cessation of the illumination, the hearing thresholds and potential returned to baseline during several minutes. These responses were replicable multiple times. ChR2 was also expressed in cochlear glial cells surrounding the neuronal components, but slight neural activation caused by the optical stimulation was unlikely to be involved in the hearing impairment. The acute-onset, reversible and repeatable phenotype, which is inaccessible to conventional gene-targeting and pharmacological approaches, seems to at least partially resemble the symptom in a population of patients with sensorineural hearing loss. Taken together, this mouse line may not only broaden applications of optogenetics but also contribute to the progress of translational research on deafness.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Doctoral Student 7 18%
Researcher 5 13%
Student > Master 4 10%
Professor > Associate Professor 3 8%
Other 6 15%
Unknown 7 18%
Readers by discipline Count As %
Medicine and Dentistry 10 26%
Agricultural and Biological Sciences 7 18%
Biochemistry, Genetics and Molecular Biology 4 10%
Engineering 4 10%
Neuroscience 3 8%
Other 5 13%
Unknown 6 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2017.
All research outputs
#12,859,920
of 23,001,641 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,117
of 2,907 outputs
Outputs of similar age
#146,606
of 318,497 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#32
of 116 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,907 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,497 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.