↓ Skip to main content

Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation
Published in
Frontiers in Molecular Neuroscience, October 2017
DOI 10.3389/fnmol.2017.00317
Pubmed ID
Authors

Serena Quarta, Maria Camprubí-Robles, Rüdiger Schweigreiter, Dusan Matusica, Rainer V. Haberberger, Richard L. Proia, Christine E. Bandtlow, Antonio Ferrer-Montiel, Michaela Kress

Abstract

The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P1-deficient neurons. Depletion of S1P3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P1 receptors to stimulate elongation or S1P3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 20%
Student > Ph. D. Student 6 17%
Student > Master 3 9%
Student > Bachelor 2 6%
Librarian 1 3%
Other 4 11%
Unknown 12 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 26%
Neuroscience 5 14%
Agricultural and Biological Sciences 3 9%
Medicine and Dentistry 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 1 3%
Unknown 13 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2018.
All research outputs
#18,641,800
of 23,094,276 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,300
of 2,930 outputs
Outputs of similar age
#248,615
of 324,564 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#92
of 120 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,930 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,564 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.