↓ Skip to main content

LAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
LAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate
Published in
Frontiers in Molecular Neuroscience, October 2017
DOI 10.3389/fnmol.2017.00327
Pubmed ID
Authors

Seoung Youn Won, Cha Yeon Kim, Doyoun Kim, Jaewon Ko, Ji Won Um, Sung Bae Lee, Matthias Buck, Eunjoon Kim, Won Do Heo, Jie-Oh Lee, Ho Min Kim

Abstract

The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-like family of proteins (Slitrks), IL-1 receptor accessory protein-like 1 (IL1RAPL1), interleukin-1 receptor accessory protein (IL-1RAcP) and neurotrophin receptor tyrosine kinase C (TrkC), to regulate synaptogenesis. Here, we determined the crystal structure of the human LAR-RPTP/IL1RAPL1 complex and found that lateral interactions between neighboring LAR-RPTP/IL1RAPL1 complexes in crystal lattices are critical for the higher-order assembly and synaptogenic activity of these complexes. Moreover, we found that LAR-RPTP binding to the postsynaptic adhesion ligands, Slitrk3, IL1RAPL1 and IL-1RAcP, but not TrkC, induces reciprocal higher-order clustering of trans-synaptic adhesion complexes. Although LAR-RPTP clustering was induced by either HS or postsynaptic adhesion ligands, the dominant binding of HS to the LAR-RPTP was capable of dismantling pre-established LAR-RPTP-mediated trans-synaptic adhesion complexes. These findings collectively suggest that LAR-RPTP clustering for synaptogenesis is modulated by a complex synapse-organizing protein network.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 25%
Researcher 7 18%
Student > Bachelor 3 8%
Student > Doctoral Student 2 5%
Other 2 5%
Other 7 18%
Unknown 9 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 33%
Neuroscience 11 28%
Agricultural and Biological Sciences 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Materials Science 1 3%
Other 0 0%
Unknown 10 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2017.
All research outputs
#14,366,228
of 23,005,189 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,549
of 2,908 outputs
Outputs of similar age
#180,862
of 325,897 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#52
of 120 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,908 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,897 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.